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Abstract. The quarter-stadium can be decomposed into a rectangle and a quarter-circle; in
each of these the Helmholtz equation is separable. We thus construct Green’s functions for
both regions and a fully quantum mechanical Bogomolny matrix. This results in a very efficient
algorithm for calculating eigenvalues and eigenfunctions. We discuss the relation of the family
of periodic ‘bouncing ball’ orbits to the contribution of the non-oscillating modes.

1. Introduction

The study of quantum systems by means of surfaces of section can be just as illuminating
as that of classical systems. This is specially evident where the semiclassical limit is
concerned, since the approximate Green’s function obtained by Bogomolny (1990, 1992) for
the quantum section depends directly on the classical orbits that intersect the corresponding
Poincaŕe section. Even within a full quantum theory, the interpretation of Doron and
Smilansky (1992), further developed by Prosen (1996), provides an intuitive decomposition
of bound motion into the scattering from both sides of the Bogomolny section.

Strictly, the physical scattering only occurs for the finite number of propagating modes,
i.e. open channels to the left and to the right of the section. Besides these, there is a discrete
infinity of evanescent modes which must be taken into account for exact quantization.
Even though these modes are included in the unitary operator of Prosen (1996) they do
not correspond to classical motion and are, therefore, not accounted for in Bogomolny’s
semiclassical propagator. Suppose, then, that we translate or rotate the section so as to lose a
significant component of the classical motion; to be specific, a set of short periodic orbits no
longer crosses the section. The construction of scattering channels will be insensitive to this
alteration, while the semiclassical propagator will be essentially affected. We conclude that
the contribution of the non-oscillating modes must be enhanced relatively to the propagating
modes which alone contribute to the semiclassical limit.

The study of the simple case of separable systems by Ozorio de Almeida (1994) revealed
explicitly that classical motion that does not intersect the Bogomolny section but affects the
quantization condition through the non-oscillating modes. Of course, separable systems are
a tool for the study of the present formalism, rather than the reverse. More interesting is
the investigation by Prosen (1996) of semiseparable systems, i.e. systems that are separable
on either side of the section, though the whole system is not. The classical dynamics
is then non-trivial, containing a generic mixture of regular and chaotic motion. Another
semiseparable system is the quarter-stadium. By placing the Bogomolny section as in
figure 1, we divide it into a rectangle and a quarter-circle.
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Figure 1. The stadium billiard constructed as the
addition of a rectangle (region (2)) and a quarter of
circle (region (1)). The Bogomolny section is defined
at x = 0 and the vertical lines in region (2) represent
the bouncing-ball classical orbits.

The purpose of this paper is to study the quantum mechanics of the quarter-stadium
from the point of view of this particular Bogomolny section. It is already of interest just
to note that one of the few paradigmatic models of fully chaotic systems can be exactly
decomposed into alternating forms of separable motion both in classical and in quantum
mechanics. Another feature of interest is that the marginally stable bouncing-ball family
of periodic orbits shown in figure 1 does not cross the section, so we can investigate how
this affects the evanescent contributions to the energy eigenvalues and the corresponding
eigenstates. It is specially interesting to discuss the relation between our exact results with
those of Tanner (1996) who uses the same section for the semiclassical Green’s function.

It is curious that the usual scattering quantization scheme is not convenient for the
present system. The rectangle in figure 1 can be easily joined to a semi-infinite tube to the
right of the section. However, though we could also join the quarter-circle to a similar tube
on the left, the resulting system would not be separable, so that the individual modes would
not satisfy the boundary conditions. It is much better to take advantage of the latitude in
the original construction of Bogomolny (1992) to obtain a Green’s function on the right on
a separable basis as explained by Ozorio de Almeida (1994). This can also be interpreted
as a non-physical scattering in an infinitely winding tube, rather than a linear tube.

The construction of the Bogomolny Green’s function is presented in section 2. The
contribution of the non-oscillating modes is discussed in section 3. It is shown that these
can only be fully understood by considering the quarter-stadium as the limit of a tube with
a bend, such as those treated by Lin and Jaffe (1996). There follows the presentation of
numerical results for the eigenvalues and eigenfunctions of the quarter-stadium in section 4.
Section 5 concludes with a discussion of the contribution of the evanescent modes and their
relation to the bouncing-ball orbits. Work is in progress on a second paper where we will
discuss the semiclassical limit of our Green’s function in a sequence of approximations.

2. The section Green’s function

Following Bogomolny (1992), we should construct Green’s functionsG1(q, q
′, E) and

G2(q, q
′, E) in the respective regions of figure 1, satisfying the inhomogeneous Helmholtz

equation

(2E −∇2
q )Gj (q, q

′, E) = δ(q − q ′) (1)

whereq is the position(x, y). Furthermore,G1 should satisfy the same Dirichlet boundary
condition as the eigenfunctions of the quarter-stadium along the horizontal radius and the
quarter-circle in figure 1, whereasG2 is cancelled along the sides of the rectangle (2), except
for the section itself.
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Separability in both regions leads to explicit formulae for the Green’s functions in terms
of the spectral decomposition in eigenmodes, just as obtained by Ozorio de Almeida (1994).
The simplest is region (2), where we decompose

G2(q, q
′;E) =

∑
m

g2(x, x
′; k2

m)〈y|2, m〉〈m, 2|y ′〉 (2)

where,k2
m = 2E −m2π2, and

〈m, 2|y〉 = 〈y|2, m〉 =
√

2 sinmπy (3)

and we choose the Green’s function for the one-dimensionalx-motion to be

g2(x, x
′; k2

m) =
1

km
exp[ikm(x

′ + a)] sinkm(x + a) (x 6 x ′). (4)

This is not the only possibility for a Green’s function that satisfies the boundary
conditions in region (2), but it was shown by Ozorio de Almeida (1994) to be one that
avoids spurious zeros in the eigenvalue condition. It is obtained by taking the image of the
source atx ′ with respect tox = −a, so that the quantum motion corresponds to two paths
betweenx ′ andx. One is direct, while the other path bounces offx = −a. Therefore this
choice is related to the scattering formalisms of Doron and Smilansky (1992) and Prosen
(1996): there is never a possibility for the motion to return, once it leaves region (2).

Bogomolny’s hypothesis that we can represent any wavefunction in region (2) as

ψ2(x, y) =
∫ 1

0
dy ′ µ2(y

′)G2(x, y,0, y ′;E) (5)

reduces to

ψ2(x, y) =
∑
m

µ2mg2(x, 0; k2
m)〈m, 2|y〉 (6)

where

µ2m =
∫

dy ′ µ2(y
′)〈y ′|2, m〉 (7)

because of separability. Since the〈m, 2|y〉 form a complete basis for the Hilbert space of
functions on the section, the representation (6) is always feasible.

We can also separate the Helmholtz equation in region (1), using polar coordinates:
q = (r, φ), obtaining

d2

dφ2
F(φ)+ ν2F(φ) = 0 (8)

which has the same form as the separate equation forx in region (2), and Bessels’ equation,[
∂

∂r

(
r
∂

∂r

)
+ 2Er − ν

2

r

]
〈r|1〉 = 0. (9)

The situation is different from that discussed by Ozorio de Almeida (1994), because the
Bogomolny section is now a radius, rather than the arc of a circle. Hence the modes are
determined by the condition that〈r = 0|1〉 = 〈r = 1|1〉 = 0, so that

〈n, 1|r〉 = 〈r|1, n〉 ∝ Jνn(kr) (10)

wherek = √2E and the sequence of real numbersνn is determined by the equation

Jνn(kr)|r=1 = 0. (11)
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The integern determines the number of nodes in〈r|1, n〉, just asm labels 〈y|1, m〉.
For smalln, Jνn(kr) will not resemble the sine functions, but forkr � ν, we can use the
approximation (Abramowitz and Stegun, 1964).

Jν(kr) ' [kr]−
1
2 cos[kr − νπ/2− π/4] (12)

so that forn > 1 condition (11) becomes

νn(k) = 2k

π
+ 1

2
− 2n (13)

in this limit. Thus, whenE � n we obtainνn ∼
√
E, just askm ∼

√
E whenE � m.

The Green’s function for the one-dimensional angular motion can now be chosen, in
exact analogy to (4), as

g1(φ, φ
′; ν2

n) =
1

νn
exp

[
iνn
(π

2
− φ′

)]
sinνn

(π
2
− φ

)
(φ > φ′) (14)

so that the full Green’s function in region (1) becomes

G1(q, q
′;E) =

∑
n

g1(φ, φ
′; ν2

n)〈r|1, n〉〈n, 1|r ′〉. (15)

Therefore,G1 is diagonal in the Bessel|1, n〉 representation, just asG2 is diagonal in the
sine-Fourier|1, m〉 representation.

We can now also use〈r|1, n〉 as an orthogonal basis for the Hilbert space defined on the
section, since they are solutions of the Sturm–Liouville problem (9) with Dirichlet boundary
conditions (see e.g. Smirnov, 1964). Thus we may decompose any density

µ1(r) =
∑
n

µn〈n, 1|r〉 (16)

and hence obtain any wavefunction in region (1) in the form

ψ1(r, φ) =
∫ 1

0
dr ′ µ1(r

′)G1(r, φ, r
′, 0;E)

=
∑
n

µ1ng1(φ, 0; ν2
n)〈n, 1|r〉. (17)

The wavefunctionsψ1(r, φ) andψ2(x, y)(defined by (5) or (6)) satisfy the Helmholtz
equation and the boundary conditions in their respective regions. The condition that they
should match along the section, together with their normal derivative, is that there exists a
unique section densityµ(y) = µ2(y) = µ1(r)|r=y , such that∫ 1

0
dy µ(y)G̃(0, y, q ′′;E) =

∫ 1

0
dr G̃(q ′, r,0;E)µ(r) = 0 (18)

where

G̃(q ′′, q ′;E) =
∫ 1

0
dy

{
G1(r, 0, r ′, φ′;E)|r=y ∂

∂x
G2(x

′′, y ′′, 0, y;E)

−G2(x
′′, y ′′, 0, y;E)

[
1

r

∂

∂φ
G1(r, 0, r ′, φ′;E)

]
r=y

}
(19)

following Bogomolny (1992) or Ozorio de Almeida (1994). ExpandingG1 in the 〈r|1, n〉
basis andG2 in the 〈y|2, m〉 basis, we obtain

G̃(q ′′, q ′;E) =
∑
nm

{
g1(0, φ

′; ν2
n)
∂

∂x
g2(x

′′, 0; k2
m)

∫
dy 〈m, 2|y〉〈y|1, n〉
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−g2(x
′′, 0; k2

m)
∂

∂φ
g1(0, φ

′; ν2
n)

∫
dy

y
〈m, 2|y〉〈y|1, n〉

}
〈y ′′|2, m〉〈n, 1|r ′〉.

(20)

Here, we recognize immediately the matrix elements for the exchanging basis. The real
matrix 〈2|1〉, with elements

〈2|1〉mn = 〈m, 2|1, n〉 =
∫

dy

y
〈m, 2|y〉〈y|1, n〉 (21)

is not unitary or orthogonal, because it transforms eigenfunctions of Sturm–Liouville
operators with different weight functions (Smirnov, 1964):

〈m, 2|y〉 =
∑
n

〈m, 2|1, n〉〈n, 1|y〉. (22)

Since both sets of basis functions are real, we shall always use〈2|1〉 or 〈1|2〉 for the
decomposition of sines into Bessel functions:

〈y|2, m〉 =
∑
n

〈y|1, n〉〈n, 1|2, m〉 (23)

represents the same expression as (22). The reverse expansion

〈n, 1|y〉 =
∑
m

〈1|2〉−1
nm〈2, m|y〉 (24)

is given by the inverse matrix〈1|2〉−1 = 〈2|1〉−1, with the matrix elements obtained
explicitly as

〈1|2〉−1
nm =

∫
dy 〈n, 1|y〉〈y|2, m〉. (25)

Taking q ′′ andq ′ onto the section, we now obtain

G̃(0, y ′′, 0, r ′;E) =
∑
nm

〈y ′′|2, m〉〈m, 2|G̃|1, n〉〈n, 1|r ′〉 (26)

where

〈m, 2|G̃|1, n〉 = ∂

∂x
g2(0, 0; k2

m)〈1|2〉−1
nmg1(0, 0; ν2

n)

−g2(0, 0; k2
m)〈m, 2|1, n〉 ∂

∂φ
g1(0, 0; ν2

n). (27)

Thus, the compatibility condition for equations (18), i.e.∑
m

〈µ|2, m〉〈m, 2|G̃|1, n〉 =
∑
n

〈m, 2|G̃|1, n〉〈n, 1|µ〉 = 0 (28)

is that the Bogomolny determinant

det〈m, 2|G̃|1, n〉 = 0. (29)

From this, we easily derive the eigenvalue condition in terms of the real matrix,

5mn = exp(−ikma)〈m, 2|G̃|1, n〉 exp
(
−iνn

π

2

)
(30)

det5(E) = det

{
coskma〈1|2〉−1

nm

sinνn π2
νn

+ sinkma

km
〈m, 2|1, n〉 cosνn

π

2

}
= 0. (31)

Thus, the eigenenergies are obtained as the zeros of a real function.
We see in this formal expression that the cost of using separable bases on each side of

the section is that it becomes necessary to use explicitly the non-unitary matrix elements
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between the sine-Fourier basis and the Bessel basis. Even so we shall show in section 4
that (31) supplies an extremely efficient method for calculating energy eigenvalues and
eigenfunction. Before this, we must discuss the finite truncation of5(E), which depends
on the contribution of the evanescent modes.

3. Non-oscillating modes

The use of〈m, 2|y〉 as a basis for arbitrary square-integrable functions on the section with
Dirichlet boundary conditions prevents any restriction on the integerm. Therefore the
transverse wavenumberkm will be imaginary form >

√
E/π , that is, the corresponding

modes will be of the form sinh|km|(x + a), a superposition of exponentially increasing and
decreasing modes. The latter, also known as evanescent modes, are the only kind allowed
in a semi-infinite tube, because the amplitude must remain finite. For the same reason, the
weight of the present non-oscillating modes will decrease rapidly withm even within the
finite region for which we defined the Green’s functionG2(q, q

′;E).
In the case of completely separable systems, it was shown by Ozorio de Almeida (1994)

that non-oscillatory modes do not effect the zeros of the Bogomolny determinant. Indeed,
the matrixG̃ is then diagonal, so that the eigenenergies are obtained from the cancellation
of individual matrix elements. The modes of the stadium are strongly coupled, so we
cannot in principle ignore those that do not oscillate, though they will not contribute in the
semiclassical limit.

We can make a rough evaluation of the strength of the coupling of the non-oscillatory
modes in region (2) to the oscillatory modes in region (1) by combining approximations
(12) and (13) to obtain

Jνn(kr) ≈
 [kr]−

1
2 cos

[
k(r − 1)+ nπ − π

2

]
(kr > νn)

0 (kr < νn)

(32)

for n > 1. Therefore, the matrix elements between the Fourier and the Bessel bases will be
approximately

〈1|2〉−1
nm ≈

∫ 1

νn/k

dy
1

[πky]
1
2

{
sin
[
(mπ − k)y + k − nπ + π

2

]
+ sin

[
(mπ + k)y − k + nπ − π

2

]}
(33)

and the maximum contribution occurs fork = √E = mπ , cancelling the oscillations in the
first integral, so that, using (13),

〈1|2〉−1
nm(max) ≈

2

π

(−1)m−n√
m

1−
[

2

π

(
1− n− 1/4

m

)] 1
2

 (34)

whereas a similar calculation leads to

〈m, 2|1, n〉(max) ≈ (−2)

π

(−1)m−n√
m

{
1−

[
2

π

(
1− n− 1/4

m

)]− 1
2

}
. (35)

The second sine term in (33) falls off faster than (34) by a factor of order(mπ + k)−1,
whereas the main term tails off withm as(mπ − k)−1 with respect to (34) or (35).

Thus, we find that the magnitude of the matrix elements are fairly insensitive to the
indexn of the Bessel representation, but there is a maximum form = √E/π . Surprisingly
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Figure 2. The family of billiards with inner radiusρ and outer radius
(1+ ρ). As in figure 1 the Bogomolny section is defined atx = 0.

this is just the point that separates the oscillating modes from the real exponential modes.
Sincem must be an integer, we find that the strongest coupling will alternate in energy
between the highest oscillating mode and the lowest non-oscillating mode. Though we shall
verify numerically that only rarely do the non-oscillating modes affect strongly the values
of the eigenenergies, they always contribute an important component to the wavefunction
in region (2).

There must also be an infinite basis in the Bessel representation of functions defined
on the section. However, there is a curious anomaly masking the nature of the non-
oscillating modes in this case. To understand the problem, it is convenient to consider the
quarter-stadium as the limit of the family of billiards in figure 2, that is, we substitute the
quarter-circle by a quarter-ring in region (1) with inner radiusρ and outer radius(1+ ρ).
The Dirichlet boundary conditions on the Bessel equation (9) now lead to a sequence of
solutions

〈r|1, n〉 = cosαnJνn(kr)+ sinαnYνn(kr) (36)

whereYν(x) are real Neumann functions, singular at the origin ifk is real. Henceαn→ 0
whenρ → 0.

In the same way as before,n specifies the number of nodes in〈r|1, n〉, but, since
νn decreases withn, there is a maximumn for which ν remains real. To obtain further
nodes,νn must become imaginary, leading to non-oscillating modes in the transverse angular
direction. BothJν(x) andYν(x) are bounded near the origin whenν is imaginary, though
both functions oscillate infinitely rapidly asx → 0. By increasing the modulus ofν we can
bring in as many nodes as we may want from the neighbourhood of the origin into the range
betweenρ and(1+ ρ). However, the sequence ofνn becomes more closely packed on the
origin asρ is decreased, so that in the limit asρ → 0, an infinite sequence of imaginary
νn accumulate atν = 0. To see this, consider the equation satisfied by

9ν(r) =
√
r{aνJν(r)+ bνYν(r)}

that is,

d2

dr2
9ν(r)+

(
k2− ν

2

r2

)
9ν(r) = 0

wherek = √2E. Whenν is imaginary the singular potential for this Schrödinger equation
becomes attractive. We see that the9ν are bounded, but oscillate increasingly as the origin
is approached for all values ofaν andbν . In the follow up of this paper we shall discuss
the asymptotic approximations of these functions.

For the billiard in figure 2 with any finite radiusρ, we can add any number of non-
oscillating nodes to the representation of wavefunctions in region (1), just as in region (2).
This must be truncated, once a numerical convergence of detG̃(E) is achieved, because
further addition of rows with very small elements to the determinant will eventually lead to
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Figure 3. (a) This shows the cumulative density of states as a function of the energy; the
continuous line shows the smooth Weyl density including corrections, for the stadium billiard
with a = 1. (b) This shows deviations from the Weyl term.

numerical instability. This truncation becomes essential in region (1) for the limitρ → 0,
i.e. the quarter-stadium. In this case, we can only take one non-oscillating mode in the
quarter-circle, preciselyν = 0, whatever the value ofk. This mode will have the form (36)
with αn chosen so as to satisfy the boundary condition atr = 1. (ThoughY0(kr) diverges at
the origin, all the integrals in the theory are well defined.) Hence we place a bound on the
dimension of the determinant, though it turns out that this always brings in non-oscillating
modes in region (2) so as to complete the square matrix〈m|G̃|n〉.

It is interesting to note that the billiard in figure 2 is very similar to the system recently
studied by Lin and Jaffe (1996). They also give special consideration to non-oscillating
modes, but their problem is to include exponentially increasing modes in open tubes.
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Figure 4. The effect in the spectrum of
excluding the evanescent modes as a function of
the wavenumberK = √2E.

Figure 5. The dimension of the matrix̃G as a
function of the wavenumberK = √2E. The
vertical lines in each box correspond to the states
in the spectrum.

4. Numerical results

The computation of eigenenergies for the quarter-stadium from the real determinant (31),
with the dimension of the matrix determined by the number of realνn plus the modeν0,
turns out to be efficient and precise. In figure 3 we exhibit the cumulative density of states
for the stadium witha = 1 and the deviation from the smoothed density including the Weyl
term plus corrections reviewed in Baltes and Hilf (1976). The effect in the spectrum of
excluding the evanescent modes from the Bogomolny matrix is displayed in figure 4. Here
we find that the deviation is always less than half of the mean level spacing, so that we may
assume that the eigenvalues have basically converged despite the small size of the matrices
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Figure 6. Comparing our spectrum (EB)
with that of Vergini and Saraceno (EV).
In the horizontal axisn represents the
sequence of eigenvalues.

Figure 7. The wavefunction obtained from the expansions (6) and (17). (a) K = 28.1169; (b)
K = 25.2175; (c) K = 24.3744; (d) K = 34.7367; (e) K = 27.7044; (f ) K = 33.8106; (g)
K = 28.0063; (h) K = 26.9704; (i ) K = 32.9431. HereK = √2E.

used, as shown in figure 5.
In figure 6 we compare our spectrum with the very precise results calculated by Vergini

and Saraceno (1995) using superpositions of plane waves and non-oscillating waves. Again
the deviations lie within one third of the averaged level spacing. It is noteworthy that for
both methods the intrinsic evaluation of precision is quite different. As in most other cases,
Vergini ascertains that the wave intensity at the boundary is close enough to satisfying the
Dirichlet boundary conditions. This is automatically satisfied by the Bogomolny method,
whereas the difficulty is now with the smoothness of the matching along the section of the
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Figure 8. Two examples of the Wronskians(w(y) > 0) at the section. (a) K = 8.8807,n = 8,
and (b) K = 28.2478,n = 101.

wavefunctions obtained as expansions (6) and (17) shown in figure 7. Finally, figure 8
exhibits two examples of the Wronskian

w(y) =
∣∣∣∣ψ1(y, 0)

∂

∂x
ψ2(0, y)− ψ2(0, y)

1

y

∂

∂φ
ψ1(y, 0)

∣∣∣∣ (37)

whereas the integral ofw(y) over the section is shown in figure 9. In all cases the
wavefunctions have been previously normalized along the section, that is∫ 1

0
|ψ1(y, 0)|2 dy =

∫ 1

0
|ψ2(0, y)|2 dy = 1. (38)

5. Discussion

The use of a fully quantum mechanical section for the stadium billiard is an enlightening
example of the Bogomolny theory for chaotic motion. The distinctive feature is that all but
one member of the family of bouncing-ball orbits neither cross nor even touch the chosen
section, but this is off-set by the fact that the last of these orbits actually coincides with the
section.

Tanner (1996), following Sieberget al (1993), and Alonso and Gaspard (1994), argues
that the bouncing-ball orbits can be entirely subtracted from the spectrum, because the
spectral determinant factors into two parts, one of which is never zero. But this term is
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Figure 9. Integral ofw(y) over the section.
The horizontal axisn represents the sequence
of eigenvalues.

essentially that of the Green’s function for free propagation along the tube. Certainly, the
resulting continuous spectrum will not contribute discrete eigenvalues, but the bouncing-
ball orbits are not dense within the corresponding classical motion, so we cannot really
ascribe the term subtracted from the Green’s function to the periodic orbits, thus we see
how difficult it is to attribute parts of the spectrum to specific classical features: changing
the boundaries may not alter certain orbits, but it will alter the Green’s function in which
the orbits appear in the semiclassical limit.

Obtaining the spectrum from Bogomolny’s eigenvalue condition provides an alternative
criterion for the contribution of a given set of classical periodic orbits. We can always
decompose the Green’s functions on either side of the section into propagating modes and
non-oscillating modes (for instance, using the scattering formalism of Doron and Smilansky,
1992). Only the former survive in the semiclassical limit, so that any periodic orbit that does
not cross the section can only contribute to the spectrum through the evanescent modes.
We can thus predict an increase in the contribution of non-oscillating modes by choosing
a section that leaves out a set of periodic orbits and basically ascribe the increase to these
orbits. In the present system we should further increase the contribution of evanescent
modes by rotating the section onto a radius of the quarter-circle, away from the bouncing
balls.

It is lucky that the section used by Tanner and us is close enough to the bouncing
balls for their contribution not to rely entirely on evanescent modes, which are absent from
his semiclassical approximation. Our results in figure 4 show that the inclusion of non-
oscillating modes only makes a small correction to the eigenvalues. Even so, the evanescent
modes provide a significant component to the eigenfunctions dominated by bouncing-ball
scars such as figure 7. These states appear mostly near the quantization conditionk = mπ as
expected, though there is a small ‘random’ component as well. In contrast, the effect of the
non-oscillating modes on the energy spectrum near these values is sometimes suppressed, as
shown in figure 4. Finally, we note that there exists a remarkable correspondence between
the disappearance of exponentially decaying angular modes in the annular region of figure 2
with the squeezing out of radial bouncing balls as the inner radiusρ → 0.
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Work is now in progress to derive the Bogomolny semiclassical approximation for the
spectrum in terms of classical orbits of the Poincaré map, explicitly from the quantum
mechanical spectral determinant for the stadium. This should provide further insight into
the dynamics of this paradigmatic model.
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